
Installation of Samtools

- Download the latest version of Samtools from (link).

- Create a folder that will contain your Samtools installation. We

will refer to this folder as <samtools>.

- Unzip the main directory of the download into the folder

<samtools>, thereby creating the folder <samtools>/samtools-x.x,

where x.x denotes the version number of Samtools.

- Create two symbolic links that point to <samtools>/samtools-x.x:

<samtools>/include and <samtools>/lib

- Now open the makefile that is shipped with Samtools

(<samtools>/samtools-x.x/Makefile) with your favorite editor and add

the flag -fPIC to the CFLAGS variable. This allows MonetDB to use

the Samtools libraries during the installation of MonetDB.

- Now you can 'cd' into the <samtools>/samtools-x.x directory and

run the make command, without any arguments.

Installation of MonetDB with the BAM library

If you want to install MonetDB with the BAM library, the

installation has to know where it can find Samtools. This is

achieved by specifying the additional option --with-

samtools=<samtools> to the configuration step, where <samtools> is

the path to the Samtools directory as described in the 'Installation

of Samtools' section.

BAM library

The BAM library contains the following features to enable working

with BAM files:

- Loading feature that enables loading a single BAM file, a user

specified selection of BAM files or all BAM files in a user

specified directory into the database.

- Removal feature that enables removing all data from a BAM file

from the database.

- A BAM SQL library, that contains some handy SQL functions for

doing analysis on BAM data that is loaded into the database.

- A SAM formatter, that renders a database result set into the

SAM format.

These features are addressed in the following sections. All of these

features follow the same database design. This database design

defines tables that can be used to store the information contained

in BAM files. First of all, the database design contains a 'files'

table that stores which BAM files are loaded into the database.

Every file tuple in this table contains a unique file id (handed out

by the BAM loader during the loading process), the location of the

BAM file when it was loaded, the value of the dbschema argument

(explained in the next paragraph) and the information that is

contained within the HD tag of the BAM file header. The database

design defines additional tables to store the remainder of the BAM

file header, where a really straightforward approach was used (e.g.

table 'sq' for SQ and table 'rg' for RG header records). The

definition of the files table and the other header tables can be

seen in the next figure.

Figure 1: Database tables that store header information

The BAM database design defines a separate set of database tables

for every BAM file that is loaded into the database. This design

choice was made to speed up analyses on only one or two BAM files,

since this often occurs in practice. This speed up is realized by

not having to filter out alignment data of specific BAM files as a

first analysis step.

When loading BAM alignment data into the database, you can choose to

store these data in one of two sets of predefined database tables,

referenced to as the straightforward table set and the pairwise

table set. These table sets are presented in the next figures, for a

BAM file with file id 'i'.

Figure 2: Table set that stores alignment data in a straightforward way

Figure 3: Table set that stores alignment data in a paired way

The database design uses the virtual offset of every alignment

record as a primary key. This way, specific alignments can easily be

found back in the original BAM file using e.g. Samtools.

The straightforward table set is aimed towards a straightforward

mapping from the alignment data as it occurs in a BAM file. Every

alignment field gets stored in a database column. Furthermore, the

extra information that is contained in alignment data is parsed and

stored in a separate table (alignments_extra_i).

The pairwise table set aims at reducing the performance overhead

when many operations are done on paired alignment data. During the

loading process, both primary and secondary alignment pairs are

automatically recognized and stored accordingly in the appropriate

database tables. The columns in the paired tables have either an 'l'

or an 'r' prefix (except for the 'qname', since two alignment

records in the same pair always have the same qname). Columns with

an 'l' prefix store data from alignment records that have their

'first segment' flag set to 1 and columns with an 'r' prefix do this

for alignments with their 'last segment' flag set to 1. All

alignments that can not be paired are stored in the unpaired

alignments table, which has the same structure as the regular

alignments table in the straightforward table set. In addition to

physical tables, the pairwise table set also defines some views over

the data, which are also automatically created. These views offer

ways to access the data is if it was stored in an unpaired fashion.

E.g., any query that is aimed towards the alignments table from the

straightforward table set can be fired at the

unpaired_all_alignments view.

Note: currently, if you want to load a BAM file into the pairwise

storage schema, the BAM file has to be sorted on queryname. If this

is not the case yet, please sort it first using e.g. Samtools before

trying to load it into the database.

Loading BAM files into the database

After succesful installation of the BAM library, loading BAM files

into the database is really simple. You do not have to worry about

creating the appropriate database schemas or tables, as all of this

is taken care of by the BAM loader. When given a load command, the

BAM loader executes the following routine:

- It checks whether or not the database schema 'bam' already

exists, since all data that will be stored by the BAM loader

will be stored in this schema. If it does not exist, it is

automatically created.

- It checks for every header table (Figure 1) whether or not this

table exists already. If it does not exist, it is automatically

created.

- For every BAM file to be loaded:

o A unique file id 'k' is calculated for this BAM file

o The appropriate table set is created, with all i suffixes

replaced by 'k'

o Load all header data and alignment data into binary files

o Use the MonetDB native COPY INTO statement to transfer

all binary files into the database tables

The following SQL functions are available to load BAM files into the

database:

bam_loader_file(file_location, dbschema)

Loads a single BAM file into the database.

file_location: Absolute path to the file

dbschema: 0 if you want to load the data from the BAM file into the

straightforward table set

 1 if you want to load the data from the BAM file into the

pairwise table set

bam_loader_files(list_location, dbschema, nr_threads)

Loads a list of BAM files into the database.

list_location: Absolute path to a text file containing the paths to

all the BAM files that have to be loaded, separated by a newline

character

dbschema: 0 if you want to load the data from the BAM file into the

straightforward table set

 1 if you want to load the data from the BAM file into the

pairwise table set

nr_threads: Enables you to specify how many threads may be used to

write the data from the BAM files to binary files

bam_loader_repos(repos_location, dbschema, nr_threads)

Loads all BAM files in a directory (non-recurisve) into the

database.

repos_location: Absolute path to a directory containing BAM files.

dbschema: 0 if you want to load the data from the BAM file into the

straightforward table set

 1 if you want to load the data from the BAM file into the

pairwise table set

nr_threads: Enables you to specify how many threads may be used to

write the data from the BAM files to binary files

For example, loading a single BAM file /path/to/bam/example.bam into

the straightforward table set could be done from the SQL context by

executing the following SQL:

CALL bam_loader_file('/path/to/bam/example.bam', 0);

After loading BAM files into the database, their data will be stored

in a table set that will be created during the loading process. You

will not know beforehand what the file id of the loaded files will

be and therefore, you do not know beforehand what tables will be

created. Therefore, you can consult the files table to see what file

id was assigned to your file:

SELECT * FROM bam.files;

Result:
+---------+--------------------------+----------+----------------+---------------+----------+

| file_id | file_location | dbschema | format_version | sorting_order | comments |

+=========+==========================+==========+================+===============+==========+

| 33 | /path/to/bam/example.bam | 0 | 1.0 | unsorted | null |

+---------+--------------------------+----------+----------------+---------------+----------+

In this case, the alignment data will be stored in the tables

bam.alignments_33 and bam.alignments_extra_33.

Removing a BAM file from the database

The BAM library enables you to remove all traces from a BAM file

from the database, by providing you with the following SQL function:

bam_drop_file(file_id, dbschema)

Removes all entries of a BAM file in the header tables and removes

the table set that was created for this BAM file.

file_id: The file id from the BAM file that has to be removed (can

be found in the bam.files table)

dbschema: 0 if data was loaded into a straightforward table set

 1 if data was loaded into a pairwise table set

Using the BAM SQL library

There are some operations that are often done on BAM data that are

hard, or even impossible, to express using SQL. Therefore, we added

some SQL functions that hopefully make your life easier.

bam_flag(flag, name)

Returns a boolean value, indicating whether or not the bit with the

given name was set to 1 in the given flag.

flag: Any integer value

name: The name of the bit that has to be checked. See Table 1 for

the names that we have given to the several bit positions.

Bit Name

0x1 mult_segm

0x2 prop_alig

0x4 segm_unma

0x8 next_unma

0x10 segm_reve

0x20 next_reve

0x40 firs_segm

0x80 last_segm

0x100 seco_alig

0x200 qual_cont

0x400 opti_dupl

0x800 supp_alig

Table 1: Mapping of bit position to names

For example, if we want to select all primary alignment records from

table bam.alignments_1, we could use the bam_flag function to

construct an easy to read SQL query:

SELECT *

FROM bam.alignments_1

WHERE bam_flag(flag, 'seco_alig') = False;

reverse_seq(seq)

Compute the reverse complement of a sequence string.

seq: Sequence string containing only the characters

A,T,C,G,R,Y,S,W,K,M,H,D,V,B,N

reverse_qual(qual)

Compute the reverse quality string.

qual: Quality string.

seq_length(cigar)

Use the cigar string of an alignment to calculate the actual length

of its sequence string (the length of the area of the reference

string the alignment got mapped to).

cigar: Cigar string

Rendering query results to a SAM format

If you are using mclient to communicate with MonetDB, you can use

the built-in SAM formatter to export query results to a SAM format.

In order for this to work, the output columns must have the

appropriate names, i.e. the renderer looks for the column names as

defined by the alignments_i table defined in Figure 1. If there are

columns that cannot be mapped, you will receive a notification about

this and the renderer will simply not do anything with the data in

these columns.

First of all, select the SAM formatter in mclient by typing:

\f sam

Now, if you execute a query within mclient, the result will be

written to the selected output channel in SAM format. In case you

want to write the output to a SAM file, you can type the following

command in mclient:

\>/path/to/your/new/samfile.sam

After that command, query results will be written to your SAM file.

In case you want to generate multiple SAM files, don’t forget to use

the \> command every time, to steer your output in the right

direction. When you do not do this, query results will be simply

appended to the already selected file.

