
Don’t Hold My Data Hostage

Mark Raasveldt, Hannes Mühleisen

A Case For Client Protocol Redesign

What is a Client Protocol anyway?

▸ Every database that supports remote clients has a
client protocol

▸ Using this protocol, clients can query the database

▸ In response to a query, the server computes a result

▸ Then the result is transferred back to the client

What is a Client Protocol anyway?

Motivation

▸ Traditionally, client protocols were mainly used for
printing output to a console

▸ Console clients (psql, mclient)

▸ Currently, many clients actually want to use and
analyze the data

▸ External analysis tools (R/Python)

▸ Visualisation tools (Tableau)

Motivation

▸ Problem: Current protocols were designed for
exporting small amount of rows

▸ OLTP use cases

▸ Exporting aggregations

▸ Exporting large amounts of data using these
protocols is slow

Motivation

Netcat (0.23s)

12.912.912.912.9

12.112.112.112.1

24.624.624.624.6

13.913.913.913.9

9.89.89.89.8

5.95.95.95.9

7.47.47.47.4

11.411.411.411.4

Hive

MonetDB

DB2

DBMS X

PostgreSQL

MongoDB

MySQL+C

MySQL

0 10 20
Wall clock time (s)

Operation
Connection
Printing
Query Execution
RSS + Transfer

▸ Cost of exporting 1M rows of the lineitem table from
TPC-H (120MB in CSV format) on localhost

Motivation

▸ We are not the first ones to notice this problem

▸ A lot of work on in-database processing, UDFs, etc.

▸ However, that work is database-specific and requires
adapting of existing work flows

▸ This work: Why is exporting large amounts of data
from a database so inefficient?

▸ Can we make it more efficient?

Cost of Data Export

▸ We don’t care about printing and connection costs

▸ What about result set (de)serialization + transfer?

State of the Art Protocols

▸ Why do these protocols exhibit this behaviour?

▸ Let’s take a look at this simple table serialised using
different databases’ result set serialisation formats.

State of the Art Protocols

4450464B4705000000BC1000000000000444 020017000000

4F4B0200000000E1F5050000000444 020014000000

L
en
gt
h

F
ie
ld

C
ou

nt

L
en
gt
h

F
ie
ld

1

D
at
a

F
ie
ld

1

D
at
a

F
ie
ld

2

L
en
gt
h

F
ie
ld

2

M
es
sa
ge

T
yp

e

▸ PostgreSQL serialisation of the previous table

Cost of Data Export

▸ Result Set Serialisation

▸ Compression, data conversions, endianness swaps,
copying data into a buffer

▸ Data Transfer Time

▸ Size of data, network limitations

▸ Result Set Deserialization

▸ (De)compression, data parsing, endianness swaps

Protocol Implementation

▸ Main ideas

▸ Columnar result set format

▸ Per-column overhead instead of per-row or per-value

▸ Better compressibility

▸ Compression depending on network limitations

▸ Specialised column-wise compression techniques

▸ Avoid endianness swaps and data conversions

▸ Avoid per-row and per-value function calls

Benchmark Results

▸ We implemented our own protocol

▸ In the column-store MonetDB

▸ In the row-store PostgreSQL

Benchmark Results

Benchmark Results

